When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. f-number - Wikipedia

    en.wikipedia.org/wiki/F-number

    The f-number of the human eye varies from about f /8.3 in a very brightly lit place to about f /2.1 in the dark. [17] Computing the focal length requires that the light-refracting properties of the liquids in the eye be taken into account. Treating the eye as an ordinary air-filled camera and lens results in an incorrect focal length and f-number.

  3. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    Instead, the angular aperture of a lens (or an imaging mirror) is expressed by the f-number, written f /N, where N is the f-number given by the ratio of the focal length f to the diameter of the entrance pupil D: =. This ratio is related to the image-space numerical aperture when the lens is focused at infinity. [3]

  4. Aperture - Wikipedia

    en.wikipedia.org/wiki/Aperture

    The lens aperture is usually specified as an f-number, the ratio of focal length to effective aperture diameter (the diameter of the entrance pupil). A lens typically has a set of marked "f-stops" that the f-number can be set to. A lower f-number denotes a greater aperture which allows more light to reach the film or image sensor.

  5. Entrance pupil - Wikipedia

    en.wikipedia.org/wiki/Entrance_pupil

    The f-number (also called the ' relative aperture '), N, is defined by N = f / E N, where f is the focal length and E N is the diameter of the entrance pupil. [2] Increasing the focal length of a lens (i.e., zooming in) will usually cause the f-number to increase, and the entrance pupil location to move further back along the optical axis.

  6. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light ; it is the inverse of the system's optical power .

  7. Hyperfocal distance - Wikipedia

    en.wikipedia.org/wiki/Hyperfocal_distance

    The depth of field, and thus hyperfocal distance, changes with the focal length as well as the f-stop. This lens is set to the hyperfocal distance for f /32 at a focal length of 100 mm. In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus.

  8. Optical telescope - Wikipedia

    en.wikipedia.org/wiki/Optical_telescope

    A system with a shorter focal length has greater optical power than one with a long focal length; that is, it bends the rays more strongly, bringing them to a focus in a shorter distance. In astronomy, the f-number is commonly referred to as the focal ratio notated as N {\displaystyle N} .

  9. Lenses for SLR and DSLR cameras - Wikipedia

    en.wikipedia.org/wiki/Lenses_for_SLR_and_DSLR...

    The relative aperture is specified as an f-number, the ratio of the lens focal length to its effective aperture diameter. A small f-number like f / 2.0 indicates a large aperture (more light passes through), while a large f-number like f / 22 indicates a small aperture (little light passes through). Aperture settings are usually not ...