Search results
Results From The WOW.Com Content Network
The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. [citation needed] In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS: A002194:
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
In other words, multiply the remainder by 100 and add the two digits. This will be the current value c. Find p, y and x, as follows: Let p be the part of the root found so far, ignoring any decimal point. (For the first step, p = 0.) Determine the greatest digit x such that (+).
As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being π / 180 = π / ( 2 2 ⋅ 3 2 ⋅ 5 ) {\displaystyle \pi /180=\pi /(2^{2}\cdot 3^{2}\cdot 5)} radians, has a repeated factor of 3 in the denominator and therefore ...
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Its numerical value truncated to 50 decimal places is: 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694... (sequence A002193 in the OEIS). Alternatively, the quick approximation 99/70 (≈ 1.41429) for the square root of two was frequently used before the common use of electronic calculators and computers.
The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real number—in this case π. For details and other constructions of real numbers, see Construction of the real numbers.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.