Search results
Results From The WOW.Com Content Network
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.
Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...
When the statistical model has several parameters, however, the mean of the parameter-estimator is a vector and its variance is a matrix. The inverse matrix of the variance-matrix is called the "information matrix". Because the variance of the estimator of a parameter vector is a matrix, the problem of "minimizing the variance" is complicated.
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.
Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC for sample sizes greater than 7. [1] The BIC was developed by Gideon E. Schwarz and published in a 1978 paper, [2] as a large-sample approximation to the Bayes factor.
Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning ...
The variance of the estimate X 1 of θ 1 is σ 2 if we use the first experiment. But if we use the second experiment, the variance of the estimate given above is σ 2 /8. Thus the second experiment gives us 8 times as much precision for the estimate of a single item, and estimates all items simultaneously, with the same precision.
In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.