When.com Web Search

  1. Ad

    related to: 2d kinematic practice problems video

Search results

  1. Results From The WOW.Com Content Network
  2. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [ 1 ] [ 2 ] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments , numerical simulations or approximate methods in order to obtain useful information on the flow.

  3. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  4. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    As long as black-body radiation (not shown) doesn't escape a system, atoms in thermal agitation undergo essentially elastic collisions. On average, two atoms rebound from each other with the same kinetic energy as before a collision.

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Kinematic diagram - Wikipedia

    en.wikipedia.org/wiki/Kinematic_diagram

    In mechanical engineering, a kinematic diagram or kinematic scheme (also called a joint map or skeleton diagram) illustrates the connectivity of links and joints of a mechanism or machine rather than the dimensions or shape of the parts. Often links are presented as geometric objects, such as lines, triangles or squares, that support schematic ...

  7. Inverse dynamics - Wikipedia

    en.wikipedia.org/wiki/Inverse_dynamics

    Kinematics; Inverse kinematics: a problem similar to Inverse dynamics but with different goals and starting assumptions.While inverse dynamics asks for torques that produce a certain time-trajectory of positions and velocities, inverse kinematics only asks for a static set of joint angles such that a certain point (or a set of points) of the character (or robot) is positioned at a certain ...

  8. Denavit–Hartenberg parameters - Wikipedia

    en.wikipedia.org/wiki/Denavit–Hartenberg...

    The system of six joint axes S i and five common normal lines A i,i+1 form the kinematic skeleton of the typical six degree-of-freedom serial robot. Denavit and Hartenberg introduced the convention that z-coordinate axes are assigned to the joint axes S i and x-coordinate axes are assigned to the common normals A i , i +1 .

  9. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace, while the motion is represented as a path in (possibly higher-dimensional) configuration space.