Search results
Results From The WOW.Com Content Network
For example, the gradient of the function (,,) = + is (,,) = + (). or (,,) = []. In some applications it is customary to represent the gradient as a row vector or column vector of its components in a rectangular coordinate system; this article follows the convention of the gradient being a column vector, while the derivative is a row ...
A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with dimension of temperature difference per unit length. The SI unit is kelvin per meter (K/m).
For example, species abundance usually changes along environmental gradients in a more or less predictable way. However, the species abundance along an environmental gradient is not only determined by the abiotic factor associated with the gradient but, also by the change in the biotic interactions , like competition and predation, along the ...
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Homogeneous regions have spatial gradient vector norm equal to zero. When evaluated over vertical position (altitude or depth), it is called vertical derivative or vertical gradient; the remainder is called horizontal gradient component, the vector projection of the full gradient onto the horizontal plane. Examples: Biology
A diffusion gradient is a gradient in the rates of diffusion of multiple groups of molecules through a medium or substrate.The groups of molecules may constitute multiple substances, portions of the same substance that have different temperatures, or other differentiable groupings.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.