Search results
Results From The WOW.Com Content Network
The continuous uniform distribution with parameters = and =, i.e. (,), is called the standard uniform distribution. One interesting property of the standard uniform distribution is that if u 1 {\displaystyle u_{1}} has a standard uniform distribution, then so does 1 − u 1 . {\displaystyle 1-u_{1}.}
Uniform distribution may refer to: Continuous uniform distribution; Discrete uniform distribution; Uniform distribution (ecology) Equidistributed sequence; See also.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The problem of estimating the maximum of a discrete uniform distribution on the integer interval [,] from a sample of k observations is commonly known as the German tank problem, following the practical application of this maximum estimation problem, during World War II, by Allied forces seeking to estimate German tank production.
A beta-binomial distribution with parameter n and shape parameters α = β = 1 is a discrete uniform distribution over the integers 0 to n. A Student's t-distribution with one degree of freedom ( v = 1) is a Cauchy distribution with location parameter x = 0 and scale parameter γ = 1.
In probability and statistics, the Irwin–Hall distribution, named after Joseph Oscar Irwin and Philip Hall, is a probability distribution for a random variable defined as the sum of a number of independent random variables, each having a uniform distribution. [1] For this reason it is also known as the uniform sum distribution.
In probability and statistics, the reciprocal distribution, also known as the log-uniform distribution, is a continuous probability distribution. It is characterised by its probability density function , within the support of the distribution, being proportional to the reciprocal of the variable.
There is a one-to-one correspondence between cumulative distribution functions and characteristic functions, so it is possible to find one of these functions if we know the other. The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f).