Ads
related to: importance of staining cells in photosynthesis diagram chart
Search results
Results From The WOW.Com Content Network
Like plants, the cyanobacteria use water as an electron donor for photosynthesis and therefore liberate oxygen; they also use chlorophyll as a pigment.In addition, most cyanobacteria use phycobiliproteins, water-soluble pigments which occur in the cytoplasm of the chloroplast, to capture light energy and pass it on to the chlorophylls.
Oxygenic photosynthesis can be performed by plants and cyanobacteria; cyanobacteria are believed to be the progenitors of the photosystem-containing chloroplasts of eukaryotes. Photosynthetic bacteria that cannot produce oxygen have only one photosystem, which is similar to either PSI or PSII .
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate ...
This kind of staining is important in the demonstration of proteins (for example type III collagen) and DNA. It is used to show both substances inside and outside cells. Silver staining is also used in temperature gradient gel electrophoresis. Argentaffin cells reduce silver solution to metallic silver after formalin fixation.
Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg 2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.
Conversely, it is a poor absorber of green and near-green portions of the spectrum. Hence chlorophyll-containing tissues appear green because green light, diffusively reflected by structures like cell walls, is less absorbed. [1] Two types of chlorophyll exist in the photosystems of green plants: chlorophyll a and b. [6]
Plant cells with visible chloroplasts (from a moss, Plagiomnium affine) The Hill reaction is the light-driven transfer of electrons from water to Hill reagents (non-physiological oxidants) in a direction against the chemical potential gradient as part of photosynthesis. Robin Hill discovered the reaction in 1937.