Search results
Results From The WOW.Com Content Network
A gamma ray, also known as gamma radiation (symbol ... gamma rays are created by nuclear decay while X-rays originate outside the nucleus. In astrophysics, ...
Several models for the origin of gamma-ray bursts postulated that the initial burst of gamma rays should be followed by afterglow: slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. [33]
The history of gamma-ray [1] began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. [2]
Likewise, gamma radiation and X-rays were found to be high-energy electromagnetic radiation. The relationship between the types of decays also began to be examined: For example, gamma decay was almost always found to be associated with other types of decay, and occurred at about the same time, or afterwards.
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus. Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy is able to ionize atoms, causing chemical reactions. Longer-wavelength ...
Dozens of telescopes all over the world are pointing at a patch of sky that gave rise to the most powerful gamma-ray burst ever seen, hoping to shed more light on processes that birth black holes.
To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.