When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    In machine learning, a neural scaling law is an empirical scaling law that describes how neural network performance changes as key factors are scaled up or down. These factors typically include the number of parameters, training dataset size, [ 1 ] [ 2 ] and training cost.

  3. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

  4. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...

  8. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    The following outline is provided as an overview of, and topical guide to, machine learning: . Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1]

  9. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow offers a set of optimizers for training neural networks, including ADAM, ADAGRAD, and Stochastic Gradient Descent (SGD). [41] When training a model, different optimizers offer different modes of parameter tuning, often affecting a model's convergence and performance.