Search results
Results From The WOW.Com Content Network
Covertype Dataset Data for predicting forest cover type strictly from cartographic variables. Many geographical features given. 581,012 Text Classification 1998 [310] [311] J. Blackard et al. Abscisic Acid Signaling Network Dataset Data for a plant signaling network. Goal is to determine set of rules that governs the network. None. 300 Text
huggingface.co Hugging Face is a French-American company that develops computation tools for building applications using machine learning . It is known for its transformers library built for natural language processing applications.
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.
GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]
The model, as well as the code base and the data used to train it, are distributed under free licences. [3] BLOOM was trained on approximately 366 billion (1.6TB) tokens from March to July 2022. [4] [5] BLOOM is the main outcome of the BigScience collaborative initiative, [6] a one-year-long research workshop that took place between May 2021 ...
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [3]Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian) on training images.
The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM) coined the term "foundation model" in August 2021 [16] to mean "any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks". [17]