Search results
Results From The WOW.Com Content Network
Phytoplankton obtain their energy through photosynthesis, as trees and other plants do on land. This means phytoplankton must have light from the sun, so they live in the well-lit surface layers (euphotic zone) of oceans and lakes. In comparison with terrestrial plants, phytoplankton are distributed over a larger surface area, are exposed to ...
Around 70% of the oxygen in the atmosphere is produced in the oceans from phytoplankton performing photosynthesis, meaning that the majority of the oxygen available for us and other organisms that respire aerobically is produced by plankton. [71] Plankton also make up the base of the marine food web, providing food for all the trophic levels above.
It has been estimated that half of the world's oxygen is produced by phytoplankton. [ 7 ] [ 8 ] Larger autotrophs, such as the seagrasses and macroalgae ( seaweeds ) are generally confined to the littoral zone and adjacent shallow waters, where they can attach to the underlying substrate but still be within the photic zone .
Sea water carries oxygen and nutrients to oceanic organisms, which allow them to be planktonic or settled. The dissolved minerals and oxygen flow with currents/circulations. Oceanic plants and animals easily capture what they need for their daily life, which make them 'lazy' and 'slow'. Sea water removes waste from animals and plants.
Microalgae, capable of performing photosynthesis, are important for life on earth; they produce approximately half of the atmospheric oxygen [2] and use the greenhouse gas carbon dioxide to grow photoautotrophically. "Marine photosynthesis is dominated by microalgae, which together with cyanobacteria, are collectively called phytoplankton."
Marine phytoplankton mostly inhabit sunlit surface waters as photoautotrophs, and require nutrients such as nitrogen and phosphorus, as well as sunlight to fix carbon and produce oxygen. However, some marine phytoplankton inhabit the deep sea, often near deep sea vents, as chemoautotrophs which use inorganic electron sources such as hydrogen ...
The word oxygen in the literature typically refers to molecular oxygen (O 2) since it is the common product or reactant of many biogeochemical redox reactions within the cycle. [37] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 production) or sink (O 2 consumption). [36 ...
Ancestors of Prochlorococcus contributed to the production of early atmospheric oxygen. [26] Despite Prochlorococcus being one of the smallest types of marine phytoplankton in the world's oceans, its substantial number make it responsible for a major part of the oceans', world's photosynthesis, and oxygen production. [2]