Search results
Results From The WOW.Com Content Network
If I and J are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation. Since f is a module homomorphism between free modules , it can be visualized as an (infinite) matrix with entries in R and M as its cokernel .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time. However, if the terms and their finite sums belong to a set that has limits , it may be possible to assign a value to a series, called the sum of the series .
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...
If the sequence has a value x that occurs infinitely many times, that value is an accumulation point of the sequence. Otherwise, every value in the sequence occurs only finitely many times and the set A = { x n : n ∈ N } {\displaystyle A=\{x_{n}:n\in \mathbb {N} \}} is infinite and so has an ω-accumulation point x .
If both are finite it is said to be a finite presentation. A group is finitely generated (respectively finitely related, finitely presented) if it has a presentation that is finitely generated (respectively finitely related, a finite presentation). A group which has a finite presentation with a single relation is called a one-relator group.
A sequence could be a finite sequence from a data source or an infinite sequence from a discrete dynamical system. Such a discrete function could be defined explicitly by a list (if its domain is finite), or by a formula for its general term, or it could be given implicitly by a recurrence relation or difference equation.
The basic open sets of the product topology are cylinder sets.These can be characterized as: If any finite set of natural number coordinates I={i} is selected, and for each i a particular natural number value v i is selected, then the set of all infinite sequences of natural numbers that have value v i at position i is a basic open set.