Ads
related to: converse of the pythagorean theorem definition math term examples worksheetstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Using composition of relations, the converse may be composed with the original relation. For example, the subset relation composed with its converse is always the universal relation: ∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B. Similarly, For U = universe, A ∪ B ⊂ U ⇔ A ⊂ U ⊃ B ⇔ A ⊂ ⊃ B.
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .
Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis) Andreotti–Frankel theorem (algebraic geometry) Angle bisector theorem (Euclidean geometry) Ankeny–Artin–Chowla theorem (number theory) Anne's theorem ; Apéry's theorem (number theory)
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...