Search results
Results From The WOW.Com Content Network
For 12 C, the isotopic mass is exactly 12, since the atomic mass unit is defined as 1/12 of the mass of 12 C. For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7]
The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element.
This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element has a mass close to one gram. Because of the definition of the unified atomic mass unit, each carbon-12 atom has an atomic mass of exactly 12 Da, and so a mole of carbon-12 atoms weighs exactly 0.012 kg. [65]
The atomic mass or relative isotopic mass are sometimes confused, or incorrectly used, as synonyms of relative atomic mass (also known as atomic weight) or the standard atomic weight (a particular variety of atomic weight, in the sense that it is standardized). However, as noted in the introduction, atomic mass is an absolute mass while all ...
The composition of a nuclide (atomic nucleus) is defined by the number of protons Z and the number of neutrons N, which sum to mass number A. Proton number Z , also named the atomic number, determines the position of an element in the periodic table .
where m e is the electron's mass, e is the elementary charge, k e is the Coulomb constant and Z is the atom's atomic number. It is assumed here that the mass of the nucleus is much larger than the electron mass (which is a good assumption). This equation determines the electron's speed at any radius:
The number of nucleons in the nucleus must be smaller than the number of available states, otherwise the nucleus cannot hold all of its nucleons. There are thus several ways to choose Z (or N) states among the n possible. In combinatorial mathematics, the number of choices of Z objects among n is the binomial coefficient C Z n.
where mass number A equals to the sum of atomic number Z and number of neutrons N, and m p, m n, a V, a S, a C, a A are constants, one can see that the mass depends on Z and N non-linearly, even for a constant mass number. For odd A, it is admitted that δ = 0 and the mass dependence on Z is convex (or on N or N − Z, it does not matter for a ...