Search results
Results From The WOW.Com Content Network
Equivalence tests are a variety of hypothesis tests used to draw statistical inferences from observed data. In these tests, the null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound. The alternative hypothesis is any effect that is less extreme than said equivalence bound.
α-conversion (alpha-conversion), sometimes known as α-renaming, [23] allows bound variable names to be changed. For example, α-conversion of λx.x might yield λy.y. Terms that differ only by α-conversion are called α-equivalent. Frequently, in uses of lambda calculus, α-equivalent terms are considered to be equivalent.
The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest. The relation " ∼ {\displaystyle \sim } is finer than ≈ {\displaystyle \approx } " on the collection of all equivalence relations on a fixed set is itself a partial order ...
The relation is an equivalence relation on the set of functions of x; the functions f and g are said to be asymptotically equivalent. The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers.
In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which does not have any upper bound. If the number 0 is included, this will be the greatest element, since this is a ...
In mathematics, and specifically in measure theory, equivalence is a notion of two measures being qualitatively similar. Specifically, the two measures agree on which events have measure zero. Specifically, the two measures agree on which events have measure zero.
By the least-upper-bound property, S has a least upper bound c ∈ [a, b]. Hence, c is itself an element of some open set U α, and it follows for c < b that [a, c + δ] can be covered by finitely many U α for some sufficiently small δ > 0. This proves that c + δ ∈ S and c is not an upper bound for S. Consequently, c = b.
The relation "is equivalent to " is reflexive, symmetric (implies ), and transitive and thus defines an equivalence relation on the set of all norms on . The norms p {\displaystyle p} and q {\displaystyle q} are equivalent if and only if they induce the same topology on X . {\displaystyle X.} [ 8 ] Any two norms on a finite-dimensional space ...