Search results
Results From The WOW.Com Content Network
Stimulated emission depletion (STED) microscopy is one of the techniques that make up super-resolution microscopy. It creates super-resolution images by the selective deactivation of fluorophores , minimizing the area of illumination at the focal point, and thus enhancing the achievable resolution for a given system. [ 1 ]
Stimulated emission was a theoretical discovery by Albert Einstein within the framework of the old quantum theory, wherein the emission is described in terms of photons that are the quanta of the EM field. [5] [6] Stimulated emission can also occur in classical models, without reference to photons or quantum-mechanics.
The rod is often placed between two mirrors, forming an optical cavity, which oscillate the light produced by the ruby's fluorescence, causing stimulated emission. Ruby is one of the few solid state lasers that produce light in the visible range of the spectrum, lasing at 694.3 nanometers, in a deep red color, with a very narrow linewidth of 0. ...
Stimulated emission depletion (STED) microscopy image of actin filaments within a cell. Stimulated emission depletion is a simple example of how higher resolution surpassing the diffraction limit is possible, but it has major limitations. STED is a fluorescence microscopy technique which uses a combination of light pulses to induce fluorescence ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The gain medium is excited by the pump source to produce a population inversion, and it is in the gain medium where spontaneous and stimulated emission of photons takes place, leading to the phenomenon of optical gain, or amplification. Examples of different gain media include: Liquids, such as dye lasers.
Schematic diagram of atomic stimulated emission. Stimulated emission (also known as induced emission) is the process by which an electron is induced to jump from a higher energy level to a lower one by the presence of electromagnetic radiation at (or near) the frequency of the transition. From the thermodynamic viewpoint, this process must be ...
Stimulated emissions between upper and lower groups, essential for gain, require the upper levels to be more populated than the corresponding lower ones. This situation is called population-inversion. It is more readily achieved if unstimulated transition rates between the two groups are slow, i.e. the upper levels are metastable. Population ...