Search results
Results From The WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
He presented a method of completing the square to solve quadratic equations, sometimes called Śrīdhara's method or the Hindu method. Because the quadratic formula can be derived by completing the square for a generic quadratic equation with symbolic coefficients, it is called Śrīdharācārya's formula in some places.
To complete the square, form a squared binomial on the left-hand side of a quadratic equation, from which the solution can be found by taking the square root of both sides. The standard way to derive the quadratic formula is to apply the method of completing the square to the generic quadratic equation a x 2 + b x + c = 0 {\displaystyle ...
For example, for the family of quadratic functions having the general form = + +, the simplest function is =, and every quadratic may be converted to that form by translations and dilations, which may be seen by completing the square. This is therefore the parent function of the family of quadratic equations.
Indeed this goes against the idea of completing the square as stated in the article, the main idea of which is to take a square component plus a rectangular component and make a larger square by breaking up the rectangle. You then have a little bit which needs to be filled in (the "completing the square").
The title of the book has been translated in a wide variety of ways. In 1852, Alexander Wylie referred to it as Arithmetical Rules of the Nine Sections. With only a slight variation, the Japanese historian of mathematics Yoshio Mikami shortened the title to Arithmetic in Nine Sections.
One of his principal achievements in algebra was his demonstration of how to solve quadratic equations by completing the square, for which he provided geometric justifications. [49]: 14 Thabit numbers: Named after Thabit ibn Qurra; Throttling valve: It appears for the first time in the Banu Musa's Book of Ingenious Devices. [50]
The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1 24 51 10, which is good to about six decimal digits. 1 + 24/60 + 51/60 2 + 10/60 3 = 1.41421296... The tablet also gives an example where one side of the square is 30, and the resulting diagonal is 42 25 35 or 42.4263888...