Search results
Results From The WOW.Com Content Network
Carbon-12 is of particular importance in its use as the standard from which atomic masses of all nuclides are measured, thus, its atomic mass is exactly 12 daltons by definition. Carbon-12 is composed of 6 protons, 6 neutrons, and 6 electrons.
Examples include carbon-14, nitrogen-15, and oxygen-16 in the table above. Isobars are nuclides with the same number of nucleons (i.e. mass number) but different numbers of protons and neutrons. Isobars neighbor each other diagonally from lower-left to upper-right. Examples include carbon-14, nitrogen-14, and oxygen-14 in the table above.
Oxygen-13 is an unstable isotope, with 8 protons and 5 neutrons. It has spin 3/2−, and half-life 8.58(5) ms. Its atomic mass is 13.024 815 (10) Da. It decays to nitrogen-13 by electron capture, with a decay energy of 17.770(10) MeV. Its parent nuclide is fluorine-14.
The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Two nuclides are isotones if they have the same neutron number N, but different proton number Z. For example, boron-12 and carbon-13 nuclei both contain 7 neutrons, and so are isotones. Similarly, 36 S, 37 Cl, 38 Ar, 39 K, and 40 Ca nuclei are all isotones of 20 because they all contain 20
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .
The oxidation state of oxygen is −2 in almost all known compounds of oxygen. The oxidation state −1 is found in a few compounds such as peroxides. [125] Compounds containing oxygen in other oxidation states are very uncommon: −1/2 (superoxides), −1/3 , 0 (elemental, hypofluorous acid), +1/2 , +1 (dioxygen difluoride), and +2 (oxygen ...