Search results
Results From The WOW.Com Content Network
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
To provide a rough example of how much pressure this is, to melt ice at −7 °C (the temperature many ice skating rinks are set at) would require balancing a small car (mass ~ 1000 kg [19]) on a thimble (area ~ 1 cm 2). This shows that ice skating cannot be simply explained by pressure-caused melting point depression, and in fact the mechanism ...
The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
Nanoscale solidification, with variable phase change temperature and energy/density effects are modelled in. [16] [17] Solidification with flow in a channel has been studied, in the context of lava [18] and microchannels, [19] or with a free surface in the context of water freezing over an ice layer.
The state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature used in the equation of state is an absolute temperature: the appropriate SI unit is the kelvin. [4]
To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as
(Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.
Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of absolute zero was approximately 266.66 °C below 0 °C. [ 12 ]