Search results
Results From The WOW.Com Content Network
[18]: 274–275 The result of this is that every possible combination of individuals who could be chosen for the sample has an equal chance to be the sample that is selected (that is, the space of simple random samples of a given size from a given population is composed of equally likely outcomes).
In probability theory, an outcome is a possible result of an experiment or trial. [1] Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. [2]
Such a matter is of importance because under such circumstances the decision-making process can be disrupted or compromised in a manner that affects the integrity or the reliability of the outcomes. Typically, a conflict of interest arises when an individual finds themselves occupying two social roles simultaneously which generate opposing ...
Here, an "event" is a set of zero or more outcomes; that is, a subset of the sample space. An event is considered to have "happened" during an experiment when the outcome of the latter is an element of the event. Since the same outcome may be a member of many events, it is possible for many events to have happened given a single outcome.
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
A typical value function in Prospect Theory and Cumulative Prospect Theory. It assigns values to possible outcomes of a lottery. The value function is asymmetric and steeper for losses than gains indicating that losses outweigh gains. A typical weighting function in Cumulative Prospect Theory.
An optimal decision is a decision that leads to at least as good a known or expected outcome as all other available decision options. It is an important concept in decision theory . In order to compare the different decision outcomes, one commonly assigns a utility value to each of them.
In particular, those conditions can only be met when there are just two possible outcomes—as with, say, a single coin flip. With three or more possible outcomes, constructing a probability function requires choosing which of the above three conditions to violate. Interpreting A → B as A′ ∪ B produces an ordinary Boolean algebra that ...