Search results
Results From The WOW.Com Content Network
The Pythagorean theorem was known and used by the Babylonians and Indians centuries before Pythagoras, [216] [214] [217] [218] but he may have been the first to introduce it to the Greeks. [219] [217] Some historians of mathematics have even suggested that he—or his students—may have constructed the first proof. [220]
Today, Pythagoras is mostly remembered for his mathematical ideas, and by association with the work early Pythagoreans did in advancing mathematical concepts and theories on harmonic musical intervals, the definition of numbers, proportion and mathematical methods such as arithmetic and geometry.
Pythagoras (c. 570 – c. 495 BC) was credited with many mathematical and scientific discoveries, including the Pythagorean theorem, Pythagorean tuning, the five regular solids, the Theory of Proportions, the sphericity of the Earth, and the identity of the morning and evening stars as the planet Venus.
A geometer is a mathematician whose area of study is the historical aspects that define geometry, instead of the analytical geometric studies that becomes conducted from geometricians. Some notable geometers and their main fields of work, chronologically listed, are:
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The book provided illustrated proof for the Pythagorean theorem, [31] contained a written dialogue between of the earlier Duke of Zhou and Shang Gao on the properties of the right angle triangle and the Pythagorean theorem, while also referring to the astronomical gnomon, the circle and square, as well as measurements of heights and distances. [32]
Greek mathematics constitutes an important period in the history of mathematics: fundamental in respect of geometry and for the idea of formal proof. [44] Greek mathematicians also contributed to number theory , mathematical astronomy , combinatorics , mathematical physics , and, at times, approached ideas close to the integral calculus .
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.