Search results
Results From The WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
The word syzygy came into mathematics with the work of Arthur Cayley. [1] In that paper, Cayley used it in the theory of resultants and discriminants. [2] As the word syzygy was used in astronomy to denote a linear relation between planets, Cayley used it to denote linear relations between minors of a matrix, such as, in the case of a 2×3 matrix:
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S.In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.
A finitary or n-ary relation is a set of n-tuples. Specific types of relations include: Relation (mathematics) (an elementary treatment of binary relations) Binary relation (or diadic relation – a more in-depth treatment of binary relations) Equivalence relation; Homogeneous relation; Reflexive relation; Serial relation
In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.