Search results
Results From The WOW.Com Content Network
For example, from Fe 2+ + 2 e − ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe 2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e −). That value is also the standard formation energy (∆ G f °) for an Fe 2+ ion, since e − and Fe( s ) both have zero formation energy.
Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.
The equation for local ion density can be substituted into the Poisson equation under the assumptions that the work being done is only electric work, and that the concentration of salt is much higher than the concentration of ions. [4] The electric work to bring an ion of charge to a surface with potential ψ can be represented by =. [4]
Since the electrons move about 600 times as fast as the ions, 600 times as many electrons will strike the wire as ions. If the wire is insulated it must assume such a negative potential that it receives equal numbers of electrons and ions, that is, such a potential that it repels all but 1 in 600 of the electrons headed for it."
In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.
The electric potential outside each material is controlled by its work function, and so dissimilar metals can show an electric potential difference even at equilibrium. The Volta potential is not an intrinsic property of the two bulk metals under consideration, but rather is determined by work function differences between the metals' surfaces ...
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...