Ad
related to: tectonic origin of ocean basins map
Search results
Results From The WOW.Com Content Network
Plate tectonics and the volume of mid-ocean ridges: the depth of the seafloor increases with distance to a ridge, as the oceanic lithosphere cools and thickens. The volume of ocean basins can be modeled using reconstructions of plate tectonics and using an age-depth relationship (see also Seafloor depth vs age).
The unique shape of the Gulf of Mexico, surrounded on all sides by continental crust, is the result of two different tectonic boundaries: an ocean-continent transform boundary, and a magmatic plume fueled seafloor spreading center active contemporaneously in regards to geologic time. The transform boundary caused two approximately 22 ...
Mid-ocean ridge cross-section (cut-away view) A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics.It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin.
The IBM trenches began to grow in length c., opening back-arc basins in the Philippine Sea. Between 30 and 17 Mya, the old age of the subducting Pacific Ocean floor (110-130 Ma) resulted in a very fast trench migration and new back-arc basins opening behind the trenches. [12]
The Nazca plate or Nasca plate, [2] named after the Nazca region of southern Peru, is an oceanic tectonic plate in the eastern Pacific Ocean basin off the west coast of South America. The ongoing subduction, along the Peru–Chile Trench, of the Nazca plate under the South American plate is largely responsible for the Andean orogeny.
With support from the maps of the sea floor, and the recently developed theory of plate tectonics and continental drift, Hess was able to prove that the Earth's mantle continuously released molten rock from the mid-ocean ridge and that the molten rock then solidified, causing the boundary between the two tectonic plates to diverge. [8]
The Pacific plate is an oceanic tectonic plate that lies beneath the Pacific Ocean. At 103 million km 2 (40 million sq mi), it is the largest tectonic plate. [2] The plate first came into existence as a microplate 190 million years ago, at the triple junction between the Farallon, Phoenix, and Izanagi plates. The Pacific plate subsequently grew ...
Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. (The rate at which new oceanic lithosphere is added to each tectonic plate on either side of a mid-ocean ridge is the spreading half-rate and is equal to half of the spreading rate). Spreading rates determine if the ridge is fast, intermediate, or slow.