When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    The ramified type (τ 1,...,τ m |σ 1,...,σ n) can be modeled as the product of the type (τ 1,...,τ m,σ 1,...,σ n) with the set of sequences of n quantifiers (∀ or ∃) indicating which quantifier should be applied to each variable σ i. (One can vary this slightly by allowing the σs to be quantified in any order, or allowing them to ...

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent "2n − 1 is odd": (i) For n = 1, 2n − 1 = 2(1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    [1] [2] Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true.

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.

  6. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 . Now suppose each positive integer a < n has a Zeckendorf representation (induction hypothesis) and consider b = n − F j .

  7. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  8. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Some of the proofs of Fermat's little theorem given below depend on two simplifications.. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1.This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.

  9. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement