When.com Web Search

  1. Ad

    related to: electron and hole current and magnetic energy transfer lab simulation

Search results

  1. Results From The WOW.Com Content Network
  2. Monte Carlo methods for electron transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.

  3. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.

  4. Shubnikov–de Haas effect - Wikipedia

    en.wikipedia.org/wiki/Shubnikov–de_Haas_effect

    The net current I m in relationship is made up of the currents towards contact m and of the current transmitted from the contact m to all other contacts l ≠ m. That current equals the voltage μ m / e of contact m multiplied with the Hall conductivity of 2e 2 / h per edge channel. Fig 2: Contact arrangement for measurement of SdH oscillations

  5. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.

  6. Exciton - Wikipedia

    en.wikipedia.org/wiki/Exciton

    An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.

  7. Electron beam-induced current - Wikipedia

    en.wikipedia.org/wiki/Electron_beam-induced_current

    If the p- and n-sides (or semiconductor and Schottky contact, in the case of a Schottky device) are connected through a picoammeter, a current will flow. EBIC is best understood by analogy: in a solar cell, photons of light fall on the entire cell, thus delivering energy and creating electron hole pairs, and cause a current to flow. In EBIC ...

  8. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.

  9. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    A simulation of a wave packet incident on a potential barrier. In relative units, the barrier energy is 20, greater than the mean wave packet energy of 14. A portion of the wave packet passes through the barrier. The wave function of a physical system of particles specifies everything that can be known about the system. [8]