Search results
Results From The WOW.Com Content Network
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.
Three dimensional extent of an object m 3: L 3: extensive, scalar Volumetric flow rate: Q: Rate of change of volume with respect to time m 3 ⋅s −1: L 3 T −1: extensive, scalar Wavelength: λ: Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance ...
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point. In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P.
Quantities having dimension one, dimensionless quantities, regularly occur in sciences, and are formally treated within the field of dimensional analysis.In the 19th century, French mathematician Joseph Fourier and Scottish physicist James Clerk Maxwell led significant developments in the modern concepts of dimension and unit.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Gross's earliest mathematical works [8] were on integration and harmonic analysis on infinite-dimensional spaces. These ideas, and especially the need for a structure within which potential theory in infinite dimensions could be studied, culminated in Gross's construction of abstract Wiener spaces [ 9 ] in 1965.
Similitude has been well documented for a large number of engineering problems and is the basis of many textbook formulas and dimensionless quantities. These formulas and quantities are easy to use without having to repeat the laborious task of dimensional analysis and formula derivation.