Search results
Results From The WOW.Com Content Network
0.8–2 MPa 120–290 psi Pressure used in boilers of steam locomotives [citation needed] 1.1 MPa 162 psi Pressure of an average human bite [citation needed] 2.8–8.3 MPa 400–1,200 psi Pressure of carbon dioxide propellant in a paintball gun [64] 5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa ...
The kilobar, equivalent to 100 MPa, is commonly used in geological systems, particularly in experimental petrology. The abbreviations "bar(a)" and "bara" are sometimes used to indicate absolute pressures, and "bar(g)" and "barg" for gauge pressures. The usage is deprecated but still prevails in the oil industry (often by capitalized "BarG" and ...
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
The test is performed by loading steadily at a rate such that K I increases from 0.55 to 2.75 (MPa)/s. During the test, the load and the crack mouth opening displacement (CMOD) is recorded and the test is continued till the maximum load is reached. The critical load P Q is calculated through from the load vs CMOD plot.
The conversion in SI units is 1 ksi = 6.895 MPa, or 1 MPa = 0.145 ksi. The megapound per square inch (Mpsi) is another multiple equal to a million psi. It is used in mechanics for the elastic modulus of materials, especially for metals. [5] The conversion in SI units is 1 Mpsi = 6.895 GPa, or 1 GPa = 0.145 Mpsi.
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
Polar coordinates at the crack tip. In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1]
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.