When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  3. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.

  4. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle S and the curve C have the common tangent line at P, and therefore the common normal line. Close to P, the distance between the points of the curve C and the circle S in the normal direction decays as the cube or a higher power of the distance to P in the tangential direction.

  5. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    If a point P moves along a line l, its polar p rotates about the pole L of the line l. If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points. If a point lies on the circle, its polar is the tangent through this point. If a point P lies on its own polar line, then P is on the circle.

  6. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The points labelled 1, Sec(θ), Csc(θ) represent the length of the line segment from the origin to that point. Sin(θ), Tan(θ), and 1 are the heights to the line starting from the x-axis, while Cos(θ), 1, and Cot(θ) are lengths along the x-axis starting from the origin.

  7. Harcourt's theorem - Wikipedia

    en.wikipedia.org/wiki/Harcourt's_theorem

    Harcourt's theorem is a formula in geometry for the area of a triangle, as a function of its side lengths and the perpendicular distances of its vertices from an arbitrary line tangent to its incircle. [1] The theorem is named after J. Harcourt, an Irish professor. [2]

  8. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .

  9. Tangent–secant theorem - Wikipedia

    en.wikipedia.org/wiki/Tangent–secant_theorem

    The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.