When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5] In this book Lagrange starts with the Lagrangian specification but later converts them into the Eulerian specification. [5]

  3. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The Euler equations can be formulated in a "convective form" (also called the "Lagrangian form") or a "conservation form" (also called the "Eulerian form"). The convective form emphasizes changes to the state in a frame of reference moving with the fluid.

  4. Lagrangian–Eulerian advection - Wikipedia

    en.wikipedia.org/wiki/LagrangianEulerian...

    In its application, the LagrangianEulerian method can be accelerated using the GPUs used in common chipsets present in Nvidia and ATI Radeon graphics cards. [5] Ensuring that the moving texture always follows the velocity field of the fluid, while maintaining properties of the original texture, is key to avoid visual artifacts.

  5. Finite strain theory - Wikipedia

    en.wikipedia.org/wiki/Finite_strain_theory

    Derivation of the Lagrangian and Eulerian finite strain tensors. A measure of deformation is the difference between the squares of the differential line element , in the undeformed configuration, and , in the deformed configuration (Figure 2). Deformation has occurred if the difference is non zero, otherwise a rigid-body displacement has occurred.

  6. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  7. Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Continuum_mechanics

    This approach is conveniently applied in the study of fluid flow where the kinematic property of greatest interest is the rate at which change is taking place rather than the shape of the body of fluid at a reference time. [14] Mathematically, the motion of a continuum using the Eulerian description is expressed by the mapping function

  8. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  9. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...