When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    A primitive polynomial must have a non-zero constant term, for otherwise it will be divisible by x. Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root).

  3. GF (2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z. Notations Z 2 and Z 2 {\displaystyle \mathbb {Z} _{2}} may be encountered although they can be confused with the notation of 2 -adic integers .

  4. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.

  5. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0. Now λ 51 = 1, so λ is not a primitive element of GF(2 8) and generates a multiplicative subgroup of order 51. [5] The monic ...

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As 2 and 3 are coprime, the intersection of GF(4) and GF(8) in GF(64) is the prime field GF(2). The union of GF(4) and GF(8) has thus 10 elements. The remaining 54 elements of GF(64) generate GF(64) in the sense that no other subfield contains any of them. It follows that they are roots of irreducible polynomials of degree 6 over GF(2). This ...

  7. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    The LFSR is maximal-length if and only if the corresponding feedback polynomial is primitive over the Galois field GF(2). [3] [4] This means that the following conditions are necessary (but not sufficient): The number of taps is even. The set of taps is setwise co-prime; i.e., there must be no divisor other than 1 common to all taps.

  8. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    Let α be a primitive element of GF(q m). For any positive integer i, let m i (x) be the minimal polynomial with coefficients in GF(q) of α i. The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x ...

  9. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...