Search results
Results From The WOW.Com Content Network
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
For some materials that have more complex responses to electromagnetic fields, these properties can be represented by tensors, with time-dependence related to the material's ability to respond to rapid field changes (dispersion (optics), Green–Kubo relations), and possibly also field dependencies representing nonlinear and/or nonlocal ...
The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material, stiffness (or compliance) tensors are used instead. In metals, anisotropic elasticity behavior is present in all single crystals with three independent coefficients for cubic crystals, for example.
Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. [1] Systematic selection of the best material for a given application begins with properties and costs of
Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
Diamagnetism is a property of all materials, and always makes a weak contribution to the material's response to a magnetic field. However, other forms of magnetism (such as ferromagnetism or paramagnetism) are so much stronger such that, when different forms of magnetism are present in a material, the diamagnetic contribution is usually ...
In hyperfine structure, the total angular momentum of the atom is = + , where is the nuclear spin angular momentum and is the total angular momentum of the electron(s). Since F = I + J {\displaystyle ~F=I+J~} has a similar mathematical form as J = L + S , {\displaystyle ~J=L+S~,} it obeys a selection rule table similar to the table above.