When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...

  4. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Generally, unless the objective function is convex in a minimization problem, there may be several local minima. In a convex problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), it is also the global minimum, but a nonconvex problem may have more than one local minimum not all of which need be ...

  5. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  6. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.

  7. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The LMA is used in many software applications for solving generic curve-fitting problems. By using the Gauss–Newton algorithm it often converges faster than first-order methods. [6] However, like other iterative optimization algorithms, the LMA finds only a local minimum, which is not necessarily the global minimum.

  8. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  9. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here =, =, and the minimum value of zero is at (,).. In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. [1]