Ad
related to: quotient rule examples
Search results
Results From The WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. ... For example, differentiating
This, combined with the sum rule for derivatives, shows that differentiation is linear. The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)
For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
The chain rule can be used to derive some well-known differentiation rules. For example, the quotient rule is a consequence of the chain rule and the product rule. To see this, write the function f(x)/g(x) as the product f(x) · 1/g(x).
In summary, both derivatives and logarithms have a product rule, a reciprocal rule, a quotient rule, and a power rule (compare the list of logarithmic identities); each pair of rules is related through the logarithmic derivative.
Here is an example: John turned 73 in 2024. The RMD on his traditional IRA is $10,000 this year. If John fails to withdraw that amount by April 1, 2025, he may be liable for a 25% excise tax ...
In that way, it is a weaker result than the reciprocal rule proved above. However, in the context of differential algebra, in which there is nothing that is not differentiable and in which derivatives are not defined by limits, it is in this way that the reciprocal rule and the more general quotient rule are established.