Search results
Results From The WOW.Com Content Network
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
The equivalence of power laws with a particular scaling exponent can have a deeper origin in the dynamical processes that generate the power-law relation. In physics, for example, phase transitions in thermodynamic systems are associated with the emergence of power-law distributions of certain quantities, whose exponents are referred to as the ...
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
Explanatory power – Ability of a theory to explain a subject; Hanlon's razor – Adage to assume stupidity over malice; Hickam's dictum – Medical principle that a patient's symptoms could be caused by several diseases; Hitchens's razor – General rule rejecting claims made without evidence
Not endlessly many. And if you are going to give examples, then you need examples of integration as well as differentiation. Deleted more strange stuff; These results can be verified with an understanding of Newton's difference quotient and the binomial theorem. One can also derive the General Power Rule via the Chain Rule.
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
The rule is sometimes written as "DETAIL", where D stands for dv and the top of the list is the function chosen to be dv. An alternative to this rule is the ILATE rule, where inverse trigonometric functions come before logarithmic functions. To demonstrate the LIATE rule, consider the integral ().
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.