Search results
Results From The WOW.Com Content Network
There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...
In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:
When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]
The determinant of the 0-by-0 matrix is 1 as follows regarding the empty product occurring in the Leibniz formula for the determinant as 1. This value is also consistent with the fact that the identity map from any finite-dimensional space to itself has determinant 1, a fact that is often used as a part of the characterization of determinants.
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...
Except for the final row and column of 1s, the matrix in the second form of this equation is a Euclidean distance matrix. Compare this to the usual formula for the oriented volume of a simplex, namely ! times the determinant of the n x n matrix composed of the n edge vectors , …,. Unlike the Cayley-Menger determinant, the latter matrix ...
Determinant definition has only multiplication, addition and subtraction operations. Obviously the determinant is integer if all matrix entries are integer. However actual computation of the determinant using the definition or Leibniz formula is impractical, as it requires O(n!) operations.