Search results
Results From The WOW.Com Content Network
Elementary Calculus: An Infinitesimal Approach; Nonstandard calculus; Infinitesimal; Archimedes' use of infinitesimals; For further developments: see list of real analysis topics, list of complex analysis topics, list of multivariable calculus topics
Differential equations are an important area of mathematical analysis with many applications in science and engineering. Analysis is the branch of mathematics dealing with continuous functions , limits , and related theories, such as differentiation , integration , measure , infinite sequences , series , and analytic functions .
While pure mathematicians sought a broad theory deriving as many as possible of the known special functions from a single principle, for a long time the special functions were the province of applied mathematics. Applications to the physical sciences and engineering determined the relative importance of functions.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Calculus is a branch of mathematics focused on limits, functions, derivatives, integrals, and infinite series. This subject constitutes a major part of contemporary mathematics education . Calculus has widespread applications in science , economics , and engineering and can solve many problems for which algebra alone is insufficient.
Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.