Search results
Results From The WOW.Com Content Network
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
LQG control applies to both linear time-invariant systems as well as linear time-varying systems, and constitutes a linear dynamic feedback control law that is easily computed and implemented: the LQG controller itself is a dynamic system like the system it controls. Both systems have the same state dimension.
If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [ 1 ] [ 2 ] The state-space method is characterized by the algebraization of general system theory , which makes it possible to use Kronecker vector-matrix structures .
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...
A nonhomogeneous system, which is linear apart from the presence of a function of the independent variables, is nonlinear according to a strict definition, but such systems are usually studied alongside linear systems, because they can be transformed to a linear system as long as a particular solution is known.
From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.
System dynamics is an aspect of systems theory as a method to understand the dynamic behavior of complex systems. The basis of the method is the recognition that the structure of any system, the many circular, interlocking, sometimes time-delayed relationships among its components, is often just as important in determining its behavior as the ...