Ad
related to: excel fill series odd numbers formula
Search results
Results From The WOW.Com Content Network
The two formulas were described by the Irish monk Dicuil in about 816 in his Computus. [5] An English translation of Dicuil's account is available. [6] Occasionally it is necessary to compute large triangular numbers where the standard formula t = n*(n+1)/2 would suffer integer overflow before the final division by 2.
The fractional part function has Fourier series expansion [19] {} = = for x not an integer. At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given ...
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
from the formula for the tangent of the difference of angles. Using s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).
A k-cycle is a cycle that can be partitioned into k contiguous subsequences, each consisting of an increasing sequence of odd numbers, followed by a decreasing sequence of even numbers. [15] For instance, if the cycle consists of a single increasing sequence of odd numbers followed by a decreasing sequence of even numbers, it is called a 1-cycle.
It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to be both odd and even. [20] The Taylor series of an even function contains only terms whose exponent is an even number, and the Taylor series of an odd function contains only terms whose exponent is an odd number. [21]
The Maclaurin series of an odd function includes only odd powers. The Fourier series of a periodic even function includes only cosine terms. The Fourier series of a periodic odd function includes only sine terms. The Fourier transform of a purely real-valued even function is real and even. (see Fourier analysis § Symmetry properties)