Search results
Results From The WOW.Com Content Network
Symmetry with respect to all rotations about all points implies translational symmetry with respect to all translations (because translations are compositions of rotations about distinct points), [18] and the symmetry group is the whole E + (m). This does not apply for objects because it makes space homogeneous, but it may apply for physical laws.
In classical physics, translational motion is movement that changes the position of an object, as opposed to rotation.For example, according to Whittaker: [1] If a body is moved from one position to another, and if the lines joining the initial and final points of each of the points of the body are a set of parallel straight lines of length ℓ, so that the orientation of the body in space is ...
There exists three points A, B, P on line g such that P is between A and B and for every point C (unequal P) between A and B there is a point D between C and P for which no motion with P as fixed point can be found that will map C onto a point lying between D and P. Axioms 2 to 4 imply that motions form a group.
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis ...
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object
The above ideas lead to the useful idea of invariance when discussing observed physical symmetry; this can be applied to symmetries in forces as well.. For example, an electric field due to an electrically charged wire of infinite length is said to exhibit cylindrical symmetry, because the electric field strength at a given distance r from the wire will have the same magnitude at each point on ...
For example, consider a tiling with equal rectangular tiles with an asymmetric pattern on them, all oriented the same, in rows, with for each row a shift of a fraction, not one half, of a tile, always the same, then we have only translational symmetry, wallpaper group p1 (the same applies without shift). With rotational symmetry of order two of ...