Search results
Results From The WOW.Com Content Network
The specific mechanism of how this enzyme works is still under investigation; however, it is known that this enzyme has the ability to couple together glyceraldehyde-3-phosphate with L-arginine in the presence of thiamine diphosphate (TDP or thiamine pyrophosphate), which is the first step of the clavulanic acid biosynthesis. [14]
This is essential for the cephamycin C and clavulanic acid, but not the 5S claims. CcaR is important for the expression of polycistronic transcripts, which are early genes for clavulanic acid biosynthesis. This is also a key factor for activating its own transcription by binding to its own promoting region. [12]
For example, Augmentin (FGP) is made of amoxicillin (a β-lactam antibiotic) and clavulanic acid (a β-lactamase inhibitor). The clavulanic acid is designed to overwhelm all β-lactamase enzymes, and effectively serve as an antagonist so that the amoxicillin is not affected by the β-lactamase enzymes. Another β-lactam/β-lactamase inhibitor ...
Streptomyces clavuligerus is a species of Gram-positive bacterium notable for producing clavulanic acid. [1]S. clavuligerus ATCC 27064 (NRRL 3585, DSM 738) was first described by Higgens and Kastner (1971), who isolated it from a South American soil sample. [2]
Caines ME, Elkins JM, Hewitson KS, Schofield CJ (2004). "Crystal structure and mechanistic implications of N2-(2-carboxyethyl)arginine synthase, the first enzyme in the clavulanic acid biosynthesis pathway".
Proclavaminate amidinohydrolase is involved in clavulanic acid biosynthesis. Clavulanic acid acts as an inhibitor of a wide range of beta-lactamase enzymes that are used by various microorganisms to resist beta-lactam antibiotics. As a result, this enzyme improves the effectiveness of beta-lactamase antibiotics.
Amoxicillin is an antibiotic while clavulanic acid is a non-antibiotic β-lactamase inhibitor which prevents metabolism of amoxicillin by certain bacteria. In addition to its β-lactamase inhibition, clavulanic acid shows central nervous system actions and effects and has been studied in the potential treatment of various psychiatric and ...
Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to β-lactamase inhibitors, such as clavulanic acid. Single amino acid substitutions at positions 104, 164, 238, and 240 produce the ESBL phenotype, but ESBLs with the broadest spectrum usually have more than a single amino acid substitution.