Search results
Results From The WOW.Com Content Network
4-Bromobenzaldehyde, or p-bromobenzaldehyde, is an organobromine compound with the formula BrC 6 H 4 CHO. It is one of three isomers of bromobenzaldehyde . [ 3 ] It displays reactivity characteristic of benzaldehyde and an aryl bromide .
Bromobenzaldehyde isomers Common name and systematic name 2-Bromobenzaldehyde [1] 3-Bromobenzaldehyde [2] 4-Bromobenzaldehyde [3] [4] Structure Molecular formula: C 7 H 5 BrO (BrC 6 H 4 COH) Molar mass: 185.020 g/mol Appearance colorless liquid colorless liquid white solid CAS number [6630-33-7] [3132-99-8] [1122-91-4] Properties Density and ...
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Methanol [4] 0.79 64.7 Ethanol: 0.78 78.4 1.22 –114.6 –1.99 K b [2] Ethylene bromide: 2.18 133 6.43
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Amygdalin 2 H 2 O HCN benzaldehyde 2 × glucose 2 × Benzaldehyde contributes to the scent of oyster mushrooms (Pleurotus ostreatus). Reactions Benzaldehyde is easily oxidized to benzoic acid in air at room temperature, causing a common impurity in laboratory samples. Since the boiling point of benzoic acid is much higher than that of benzaldehyde, it may be purified by distillation. Benzyl ...
Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol Std entropy change of fusion, Δ fus S o +31 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +42.3 ± 0.4 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 109.67 J/(mol·K) Molal ...
Boiling point: 195–196 °C [1] 236 °C [2] 235–236 °C [3] pKa [4] 8.42: 9.11: 9.34 GHS hazard pictograms [1] [2] [3] GHS hazard statements: H226, H302, H315 ...
This reagent can be used, e.g. in the reaction with carbon dioxide to prepare benzoic acid. [4] Other methods involve palladium-catalyzed coupling reactions , such as the Suzuki reaction . Bromobenzene is used as a precursor in the manufacture of phencyclidine .