When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse ...

  3. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side. [1]: pp. 261–264

  4. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    Since angle B is supplementary to both angles C and D, either of these angle measures may be used to determine the measure of Angle B. Using the measure of either angle C or angle D, we find the measure of angle B to be 180° − (180° − x) = 180° − 180° + x = x. Therefore, both angle A and angle B have measures equal to x and are equal ...

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34] The sum of the measures of the three exterior angles (one for each vertex) of any triangle is 360 degrees, and indeed, this is true for any convex polygon, no matter ...

  6. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  7. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    In the picture below, angles ∠ABC and ∠DCB are obtuse angles of the same measure, while angles ∠BAD and ∠CDA are acute angles, also of the same measure. Since the lines AD and BC are parallel, angles adjacent to opposite bases are supplementary, that is, angles ∠ABC + ∠BAD = 180°.

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    If b ≥ c, then β ≥ γ (the larger side corresponds to a larger angle). Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ.

  9. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 7b – Proof of the law of cosines for obtuse angle γ by "cutting and pasting". One can also prove the law of cosines by calculating areas. The change of sign as the angle γ becomes obtuse makes a case distinction necessary. Recall that a 2, b 2, and c 2 are the areas of the squares with sides a, b, and c, respectively;