Search results
Results From The WOW.Com Content Network
The members of the algebra may be decomposed by grade (as in the formalism of differential forms) and the (geometric) product of a vector with a k-vector decomposes into a (k − 1)-vector and a (k + 1)-vector. The (k − 1)-vector component can be identified with the inner product and the (k + 1)-vector component with the outer product. It is ...
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force, q(v × B).
The Poynting vector = represents the direction and magnitude of the power flow in the electromagnetic field (the length of the vectors shown here are not to scale; only the direction is being shown) In the region of space around the battery, the Poynting vectors are directed outward, indicating that power flows out from the battery into the ...
The Poynting vector for a wave is a vector whose component in any direction is the irradiance (power per unit area) of that wave on a surface perpendicular to that direction. For a plane sinusoidal wave the Poynting vector is 1 / 2 Re{ E × H ∗ } , where E and H are due only to the wave in question, and the asterisk denotes ...
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
The part of the first term of the electric field updates the direction of the field toward the instantaneous position of the charge, if it continues to move with constant velocity . This term is connected with the "static" part of the electromagnetic field of the charge.
Poynting may refer to: John Henry Poynting (1852–1914), a British physicist, after whom are named: Poynting vector, a representation of the energy flux of an electromagnetic field; Poynting's theorem on conservation of energy in electromagnetic field; Poynting (lunar crater), crater on the Moon; Poynting (Martian crater), crater on Mars