Search results
Results From The WOW.Com Content Network
Benzene is a natural constituent of petroleum and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma of gasoline.
Hückel's rule can also be applied to molecules containing other atoms such as nitrogen or oxygen. For example, pyridine (C 5 H 5 N) has a ring structure similar to benzene, except that one -CH- group is replaced by a nitrogen atom with no hydrogen. There are still six π electrons and the pyridine molecule is also aromatic and known for its ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
For instance, it is argued that the resonance energy measured experimentally via heats of hydrogenation is diminished by the distortions in bond lengths that must take place going from the single and double bonds of "non-aromatic 1,3,5-cyclohexatriene" to the delocalized bonds of benzene.
Aromatic compounds undergo electrophilic aromatic substitution and nucleophilic aromatic substitution reactions, but not electrophilic addition reactions as happens with carbon-carbon double bonds. Many of the earliest-known examples of aromatic compounds, such as benzene and toluene, have distinctive pleasant smells.
Using Hückel's rule, one can tell if the π-system is aromatic or antiaromatic. If aromatic, linear approaches use disrotatory motion while non-linear approaches use conrotatory motion. The opposite goes with an anti-aromatic system. Linear approaches will have conrotatory motion while non-linear approaches will have disrotatory motion. [1]
Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems. [1]
The famous Hückel 4n+2 rule for determining whether ring molecules composed of C=C bonds would show aromatic properties was first stated clearly by Doering in a 1951 article on tropolone. [6] Tropolone had been recognised as an aromatic molecule by Dewar in 1945. In 1936, Hückel developed the theory of π-conjugated biradicals (non-Kekulé ...