Ad
related to: dimensionless quantity example in physics calculator
Search results
Results From The WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
[19] [20] Examples of quotients of dimension one include calculating slopes or some unit conversion factors. Another set of examples is mass fractions or mole fractions, often written using parts-per notation such as ppm (= 10 −6), ppb (= 10 −9), and ppt (= 10 −12), or perhaps confusingly as ratios of two identical units (kg/kg or mol/mol).
For example, if "x" represented mass, the letter "m" might be an appropriate symbol to represent the dimensionless mass quantity. In this article, the following conventions have been used: t – represents the independent variable – usually a time quantity.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
Derived quantity Symbol Description SI derived unit Dimension Comments Absorbed dose rate: D: Absorbed dose received per unit of time Gy/s L 2 T −3: Action: S: Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of ...
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
A quantity of dimension one is historically known as a dimensionless quantity (a term that is still commonly used); all its dimensional exponents are zero and its dimension symbol is . Such a quantity can be regarded as a derived quantity in the form of the ratio of two quantities of the same dimension.