Ad
related to: circle packing formula
Search results
Results From The WOW.Com Content Network
In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]
A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
The circle packing theorem states that a circle packing exists if and only if the pattern of adjacencies forms a planar graph; it was originally proved by Paul Koebe in the 1930s, and popularized by William Thurston, who rediscovered it in the 1970s and connected it with the theory of conformal maps and conformal geometry. [1]
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack n unit circles into the smallest possible equilateral triangle. Optimal solutions are known for n < 13 and for any triangular number of circles, and conjectures are available for n < 28 .
The regular hexagonal packing is the densest circle packing in the plane (1890). The density is π ⁄ √ 12. The 2-dimensional analog of the Kepler conjecture; the proof is elementary. Henk and Ziegler attribute this result to Lagrange, in 1773 (see references, pag. 770).