When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    Although it is sometimes stated that all the electrons in a shell have the same energy, this is an approximation. However, the electrons in one subshell do have exactly the same level of energy, with later subshells having more energy per electron than earlier ones. This effect is great enough that the energy ranges associated with shells can ...

  3. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule. However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 , written as [Ar] 3d 4 4s 2 , but whose actual configuration given ...

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Electron configuration was first conceived under the Bohr model of the atom, and it is still common to speak of shells and subshells despite the advances in understanding of the quantum-mechanical nature of electrons. An electron shell is the set of allowed states that share the same principal quantum number, n, that electrons may occupy.

  5. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The set of orbitals for a given n and ℓ is called a subshell, denoted . The superscript y shows the number of electrons in the subshell. For example, the notation 2p 4 indicates that the 2p subshell of an atom contains 4 electrons. This subshell has 3 orbitals, each with n = 2 and ℓ = 1.

  6. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...

  7. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    The s subshell (ℓ = 0) contains only one orbital, and therefore the m ℓ of an electron in an s orbital will always be 0. The p subshell (ℓ = 1) contains three orbitals, so the m ℓ of an electron in a p orbital will be −1, 0, or 1. The d subshell (ℓ = 2) contains five orbitals, with m ℓ values of −2, −1, 0, 1, and 2.

  8. Aufbau principle - Wikipedia

    en.wikipedia.org/wiki/Aufbau_principle

    For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s 2 2s 2 2p 6 3s 2 3p 3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p ...

  9. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "core shell". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element beryllium (1s 2 2s 2). The ...