Search results
Results From The WOW.Com Content Network
Direct solution of the equations is difficult, however, in part because the separation constants and appear simultaneously in all three equations. Following the above approach, paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid.
On the axis of a circular paraboloid, there is a point called the focus (or focal point), such that, if the paraboloid is a mirror, light (or other waves) from a point source at the focus is reflected into a parallel beam, parallel to the axis of the paraboloid. This also works the other way around: a parallel beam of light that is parallel to ...
The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).
The classic applications of parabolic cylindrical coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which such coordinates allow a separation of variables. A typical example would be the electric field surrounding a flat semi-infinite conducting plate.
Every parabola with focus at the origin and x-axis as its axis of symmetry is the locus of points satisfying the equation y 2 = 2 x p + p 2 , {\displaystyle y^{2}=2xp+p^{2},} for some value of the parameter p , {\displaystyle p,} where | p | {\displaystyle |p|} is the semi-latus rectum.
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...
Employing the Korsch equations with minimal modifications, the number of mirrors is reduced from three to two by combining the primary surface and the tertiary surface on the same mirror. In one option the tertiary is identical to the primary, whereas the second option shows the tertiary as polished into the primary mirror.