Search results
Results From The WOW.Com Content Network
The refractive index n of the liquid can then be calculated from the maximum transmission angle θ as n = n G sin θ, where n G is the refractive index of the prism. [66] A handheld refractometer used to measure the sugar content of fruits. This type of device is commonly used in chemical laboratories for identification of substances and for ...
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.
The refractive index of many materials (such as glass) varies with the wavelength or color of the light used, a phenomenon known as dispersion. This causes light of different colors to be refracted differently and to leave the prism at different angles, creating an effect similar to a rainbow .
Refraction is also responsible for rainbows and for the splitting of white light into a rainbow-spectrum as it passes through a glass prism. Glass and water have higher refractive indexes than air. Glass and water have higher refractive indexes than air.
This angle of incidence where the angle of deviation in a prism is minimum is called the minimum deviation position of the prism and that very deviation angle is known as the minimum angle of deviation (denoted by δ min, D λ, or D m). Light is deflected as it enters a material with refractive index > 1. A ray of light is deflected twice in a ...
Refractive index vs. wavelength for BK7 glass. Red crosses show measured values. Over the visible region (red shading), Cauchy's equation (blue line) agrees well with the measured refractive indices and the Sellmeier plot (green dashed line). It deviates in the ultraviolet and infrared regions.
An Abbe diagram, also known as 'the glass veil', plots the Abbe number against refractive index for a range of different glasses (red dots). Glasses are classified using the Schott Glass letter-number code to reflect their composition and position on the diagram.